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a b s t r a c t

Fan’s minimax inequality is extended to the context of metric spaces with global
nonpositive curvature. As a consequence, a much more general result on the existence of a
Nash equilibrium is obtained.

© 2009 Elsevier Ltd. All rights reserved.

1. Preliminaries

Suppose that C is a nonempty compact and convex subset of a linear topological space. Fan’s minimax inequality asserts
that any function f : C × C → R+ which is quasi-concave in the first variable and lower semicontinuous in the second
variable verifies the minimax inequality,

min
y∈C
sup
x∈C
f (x, y) ≤ sup

z∈C
f (z, z). (F)

As is well known, this result is equivalent to the Brouwer Fixed Point Theorem. See [1], pp. 205–206.
The aim of this work is to extend Fan’sminimax inequality to the framework of global NPC spaces, that is, to the complete

metric spaces with global nonpositive curvature.

Definition 1. A global NPC space is a complete metric space E = (E, d) for which the following inequality holds true: for
each pair of points x0, x1 ∈ E there exists a point y ∈ E such that for all points z ∈ E,

d2(z, y) ≤
1
2
d2(z, x0)+

1
2
d2(z, x1)−

1
4
d2(x0, x1). (NPC)

In a global NPC space each pair of points x0, x1 ∈ E can be connected by a geodesic (that is, by a rectifiable curve
γ : [0, 1] → E such that the length of γ |[s,t] is d(γ (s), γ (t)) for all 0 ≤ s ≤ t ≤ 1). Moreover, this geodesic is unique. The
point y that appears in the inequality (NPC) is themid-point of x0 and x1 and has the property

d(x0, y) = d(y, x1) =
1
2
d(x0, x1).

Every Hilbert space is a global NPC space. In this case the geodesics are the line segments.
A Riemannian manifold (M, g) is a global NPC space if and only if it is complete, simply connected and of nonpositive

sectional curvature. Besides manifolds, other important examples of global NPC spaces are the Bruhat–Tits buildings (in
particular, the trees). See [2]. More information on the global NPC spaces is available in [3,4].
In what follows E will denote a global NPC space.
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Definition 2. A set C ⊂ E is called convex if γ ([0, 1]) ⊂ C for each geodesic γ : [0, 1] → C joining γ (0), γ (1) ∈ C .
A function ϕ : C → R is called convex if the function ϕ ◦ γ : [0, 1] → R is convex for each geodesic γ : [0, 1] →

C, γ (t) = γt , that is,

ϕ(γt) ≤ (1− t)ϕ(γ0)+ tϕ(γ1)

for all t ∈ [0, 1]. The function ϕ is called concave if−ϕ is convex.

All closed convex subsets of a global NPC space are in turn spaces of the same nature. In a global NPC space, the distance
function is convex with respect to both variables, a fact which implies that every ball is convex in the sense of Definition 2.
An important feature of global NPC spaces is the possibility of introducing a well behaved concept of a barycenter of a

probability measure. See [5] for details. For the convenience of the reader, we shall recall here some basic facts.
P 1(E) denotes the set of all Borel probability measures µ on E with separable support, which verify the condition∫

E
d(x, y)dµ(y) <∞

for some (and hence for all) x ∈ E. The barycenter of a measure µ ∈ P 1(E) is the unique point z ∈ E which minimizes the
uniformly convex function Fy : z →

∫
E

[
d2(z, x)− d2(y, x)

]
dµ(x); this point is independent of y ∈ E and is also denoted as

b(µ).
If the support of µ is included in a convex closed set K , then b(µ) ∈ K .
P 1(E) can be made a metric space with respect to theWasserstein distance,

dW (µ, ν) = inf
∫∫
E×E
d(x, y)dλ(x, y),

where the infimum is taken over all λ ∈ P 1(E× E)with marginalsµ and ν. With respect to this metric the barycenter map
is nonexpansive, that is,

d(b(µ), b(ν)) ≤ dW (µ, ν)

for all µ, ν ∈ P 1(E).
In what followswe shall be interested also in amore general class of convex like functions, based on their behavior under

the action of means.
The weightedMp-mean is defined for pairs of positive numbers x, y by the formula

Mp(x, y; 1− t, t) =


((1− t)xp + typ)1/p, if p ∈ R \ {0}
x1−tyt , if p = 0
min{x, y}, if p = −∞
max{x, y}, if p = ∞,

where t ∈ [0, 1]. If p is an odd number, we can extendMp to pairs of real numbers.
The unweighted meansMp(x, y) correspond to the case where λ = 1/2.

Definition 3. We say that a function ϕ : C −→ R isMp-concave if for each geodesic γ : [0, 1] → C,

f (γt) ≥ Mp(ϕ(γ0), ϕ(γ1); 1− t, t), for all t ∈ [0, 1].

Thus theM1-concave functions are the usual concave functions, while theM∞-concave functions are precisely the quasi-
concave functions.
The aim of this work is to prove the following analogue of Fan’s inequality:

Theorem 1. Let C be a compact convex subset of a global NPC space E.
(i) If f : C × C → R+ is quasi-concave in the first variable and lower semicontinuous in the second variable, then

min
y∈C
sup
x∈C
f (x, y) ≤ sup

z∈C
f (z, z). (F)

(ii) If p ∈ R and f : C × C → R+ is Mp-concave and lower semicontinuous in each variable, then

min
y∈C
sup
x∈C
Mpp (f (x, y), f (y, x); 1− t, t) ≤ sup

z∈C
f p(z, z), (pF)

for all t ∈ (0, 1).

For p an odd number, the function f may take negative values.
The ‘‘flat’’ version of Theorem 1 (ii) is discussed in our paper [6].
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2. The KKM lemma

The Knaster–Kuratowski–Mazurkiewicz Lemma (abbreviated as the KKM Lemma) is an important result in nonlinear
analysis, equivalent to the Brouwer Fixed Point Theorem. Recall here its statement:

Lemma 1 (Knaster–Kuratowski–Mazurkiewicz). Suppose that for every point x in a nonempty set X of a linear Hausdorff
topological space E, there is an associated closed subset M(x) ⊂ X such that

co F ⊂
⋃
x∈F

M(x)

holds for all finite subsets F ⊂ X. Then for any finite subset F ⊂ X we have⋂
x∈F

M(x) 6= ∅.

Hence if some subset M(z) is compact, we have⋂
x∈X

M(x) 6= ∅.

The proof of the KKM Lemma follows from the basic fact that the convex hull co F , of any finite set F , lies in a finite
dimensional space and thus it is also compact. This makes it possible to apply the Brouwer fixed point theorem and to
conclude that co F has the fixed point property. See [1], pp. 185–186. Recall that a topological space K has the fixed point
property if every continuous map f : K → K has a fixed point.
In the context of global NPC spaces we will adopt a similar strategy, based on the remark that in a locally compact global

NPC space, the closed convex hull of each finite family of points has the fixed point property. As a consequence, in a global
NPC space every compact convex set has the fixed point property (and this fact can beused to prove the analogue of the Schauder
Fixed Point Theorem).
Recall that the notion of a convex hull is introduced via the formula

co F =
∞⋃
n=0

Fn,

where F0 = F and for n ≥ 1 the set Fn consists of all points in E which lie on geodesics which start and end in Fn−1.

Lemma 2. The KKM Lemma extends to any global NPC space E, provided that the closed convex hull of every nonempty finite
family of points of E has the fixed point property.

Proof. We will concentrate here on the case where some of the setsM(x) are compact.
Assuming

⋂
x∈X M(x) = ∅, this yields the existence of a finite family of points x1, . . . , xN ∈ X such that

N⋂
i=1

M(xi) = ∅.

Then the map x→ µx =
∑N
i=1 d(x,M(xi))δxi/

∑N
i=1 d(x,M(xi)) is continuous (from E into P 1(E)) and suppµx ⊂ K =

co {x1, . . . , xN} .
According to our hypothesis, the composite map P : x → µx → bµx should have a fixed point x̄ ∈ K . Via a

permutation, we may assume that d(x,M(xi)) > 0 for i = 1, . . . , j and d(x,M(xi)) = 0 for i > j. This shows that actually
x ∈ co

{
x1, . . . , xj

}
⊂
⋃j
i=1M(xi). Equivalently, x ∈ M(xi) for some i ≤ j, a fact that contradicts the choice of j. Therefore

the intersection
⋂
x∈X M(x) is nonempty. �

3. Proof of the main result

We actually prove a much more general result:

Theorem 2. Suppose that p ∈ R and f : C × C → R+ is a function which is Mp-concave and lower semicontinuous in each
variable. Then for every continuous affine onto function g : C → C and every t ∈ (0, 1),

min
y∈C
sup
x∈C
Mpp (f (x, y), f (y, x); 1− t, t) ≤ sup

z∈C
Mpp (f (z, g(z)), f (g(z), z); 1− t, t).

This result has a straightforward variant for the Mp-convex functions which are upper semicontinuous with respect to each
variable.

Recall that a function g : X → Y between geodesic metric spaces is called affine if it maps the geodesics to geodesics.
For more details, see [7].
Theorem 3 represents the particular case where g is the identity of C .
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Proof. We attach to each t ∈ [0, 1] a family of setsM(g(x))x∈C ,whereM(g(x)) consists of all y ∈ C such that

Mpp (f (x, y), f (y, x); 1− t, t) ≤ sup
z
Mpp (f (z, g(z)), f (g(z), z); 1− t, t).

We will show that this family satisfies the hypothesis of Lemma 2. In fact, g(x) ∈ M(g(x)) for every x ∈ C and

co F ⊂
⋃
x∈F

M(g(x))

for every finite subset F ⊂ C . For example, if F consists of two elements x1 and x2, we have to show that the geodesic β
joining the points g(x1) and g(x2) verifies

βθ ∈ M(g(x1)) ∪M(g(x2)) (3.1)

for every θ ∈ (0, 1). Our argument is by reductio ad absurdum.
If (3.1) fails, then for some θ ∈ (0, 1)we have

Mpp (f (x1, βθ ), f (βθ , x1); 1− t, t) > sup
z
Mpp (f (z, g(z)), f (g(z), z); 1− t, t), (3.2)

and

Mpp (f (x2, βθ ), f (βθ , x2); 1− t, t) > sup
z
Mpp (f (z, g(z)), f (g(z), z); 1− t, t). (3.3)

The Intermediate Value Theorem yields an element γθ1 of the geodesic γ , joining x1 and x2, such that

g(γθ1) = βθ .

Since f isMp-concave in each variable, it follows that the number

Mpp (f (γθ1 , g(γθ1)), f (g(γθ1), γθ1); 1− t, t)

exceeds

(1− t)((1− θ1)f p(x1, βθ )+ θ1f p(x2, βθ ))+ t((1− θ1)f p(βθ , x1)+ θ1f p(βθ , x2))
= (1− θ1)((1− t)f p(x1, βθ )+ tf p(βθ , x1))+ θ1((1− t)f p(x2, βθ )+ tf p(βθ , x2))
= (1− θ1)Mpp (f (x1, βθ ), f (βθ , x1); 1− t, t)+ θ1M

p
p (f (x2, βθ ), f (βθ , x2); 1− t, t)

> (1− θ1) sup
z
Mpp (f (z, g(z)), f (g(z), z); 1− t, t)+ θ1 sup

z
Mpp (f (z, g(z)), f (g(z), αt); 1− t, t)

= sup
z
Mpp (f (z, g(z)), f (g(z), z); 1− t, t),

which is a contradiction. Thus (3.1) follows.
By Lemma 2 we infer that

⋂
xM(g(x)) 6= ∅, which yields the existence of y ∈ C such that

Mpp (f (x, y), f (y, x); 1− t, t) ≤ sup
z
Mpp (f (z, g(z)), f (g(z), z); 1− t, t),

for every x ∈ C , or equivalently,

sup
x
Mpp (f (x, y), f (y, x); 1− t, t) ≤ sup

z
Mpp (f (z, g(z)), f (g(z), z); 1− t, t).

In conclusion,

min
y
sup
x
Mpp (f (x, y), f (y, x); 1− t, t) ≤ sup

z
Mpp (f (z, g(z)), f (g(z), z); 1− t, t). �

4. Further results

As above, E denotes a global NPC space.
The following nonsymmetric version of Theorem 2 can be proved in a similar manner:

Theorem 3. Let C1 and C2 be two nonempty compact and convex subsets of E, and let g be a continuous affine onto function
g : C1 → C2. Then for every function f : C1 × C2 → R+ which is quasi-concave in the first variable and lower semicontinuous
in the second variable, the following inequality holds:

min
x∈C1
sup
y∈C2
f (x, y) ≤ sup

z∈C1
f (z, g(z)).

If f : C1 × C2 → R+ is quasi-convex with respect to the second variable and upper semicontinuous in the first variable, then

max
x∈C1

inf
y∈C2
f (x, y) ≥ inf

z∈C1
f (z, g(z)).
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Proof. In the first case, apply Lemma 2 to the following family of sets:

M(g(x)) = {y ∈ C2 : f (x, y) ≤ sup
z∈C1
f (z, g(z))}, for all x ∈ C1. �

An important application of Theorem 3 is the existence of a g-equilibrium, a fact that generalizes the well known result
on the Nash equilibrium:

Theorem 4. Let C = C1 × C2 × · · · × Cn be a Cartesian product of n nonempty compact and convex subsets of E, let
g = (g1, g2, . . . , gn) : C → C be a continuous affine onto function and let f1, . . . , fn : C → C be lower semicontinuous
functions such that each of the maps xi → fi(y1, . . . , gi(xi), . . . , yn) (i = 1, . . . , n) is quasi-convex for every y ∈ C. Then there
exists an ȳ ∈ C such that

fi(ȳ) ≤ fi(ȳ1, . . . , gi(xi), . . . , ȳn),

for every xi ∈ Ci, i = 1, . . . , n.

Proof. Let f (x, y) =
∑n
i=1(fi(y)− fi(y1, . . . , gi(xi), . . . , yn)). It is easy to see that f satisfies the assumptions of Theorem 3.

This yields an ȳ ∈ C such that

sup
x∈C
f (x, ȳ) ≤ sup

z∈C
f (z, g(z)) = 0.

Letting x = (ȳ1, . . . , xi, . . . , ȳn) (i = 1, . . . , n) in the last inequality we conclude that

fi(ȳ)− fi(ȳ1, . . . , gi(xi), . . . , ȳn) ≤ 0

for every xi ∈ Ci, i = 1, . . . , n. �
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